class ntcFunctionLC : public ntcFunction

Description:

ntcFunctionLC is a class introduced to be able to sum two functions

Inheritance:


Public Methods

static ntcFunctionLC* New()
void SetAddends( ntcFunction *g, ntcFunction *h )
void SetCoefficients( float a, float b )

Public

The function
virtual float f( float x[3] )
Its gradient
virtual float fX( float x[3] )
virtual float fY( float x[3] )
virtual float fZ( float x[3] )
Its Hessian
virtual float fXX( float x[3] )
virtual float fYY( float x[3] )
virtual float fZZ( float x[3] )
virtual float fXY( float x[3] )
virtual float fYZ( float x[3] )
virtual float fZX( float x[3] )

Protected Fields

float a
float b
ntcFunction* g
ntcFunction* h

Inherited from ntcFunction:

Public Methods

virtual void fGrad( float x[3], float grad[3] )
virtual void fHessian( float x[3], float hessian[3][3] )

Documentation

ntcFunctionLC is a class introduced to be able to sum two functions. Setting two functions f,g with the method SetAddends, its method EvaluateFunction returns the sum of the two functions. No homology method is defined for this function as there is no way to guess it from addends. This class has been introduced primarily to allow an easy implementation of methods like ntcPlaneFoliation::SetCriticalCurves where is needed to create a new function form the gradient of the Hamiltonian and the components of the 1-form.

static ntcFunctionLC* New()
void SetAddends( ntcFunction *g, ntcFunction *h )
void SetCoefficients( float a, float b )
The function
virtual float f( float x[3] )
Its gradient
virtual float fX( float x[3] )
virtual float fY( float x[3] )
virtual float fZ( float x[3] )
Its Hessian
virtual float fXX( float x[3] )
virtual float fYY( float x[3] )
virtual float fZZ( float x[3] )
virtual float fXY( float x[3] )
virtual float fYZ( float x[3] )
virtual float fZX( float x[3] )
float a
float b
ntcFunction* g
ntcFunction* h

This class has no child classes.

alphabetic index hierarchy of classes


this page has been generated automatically by doc++

(c)opyright by Malte Zöckler, Roland Wunderling
contact: doc++@zib.de