ntcFunctionLC
class ntcFunctionLC : public ntcFunction
Description:
ntcFunctionLC is a class introduced to be able to sum two functions
Inheritance:
Public Methods
-
- static ntcFunctionLC* New()
- void SetAddends( ntcFunction *g, ntcFunction *h )
- void SetCoefficients( float a, float b )
Public
- The function
- virtual float f( float x[3] )
- Its gradient
- virtual float fX( float x[3] )
- virtual float fY( float x[3] )
- virtual float fZ( float x[3] )
- Its Hessian
- virtual float fXX( float x[3] )
- virtual float fYY( float x[3] )
- virtual float fZZ( float x[3] )
- virtual float fXY( float x[3] )
- virtual float fYZ( float x[3] )
- virtual float fZX( float x[3] )
Protected Fields
- float a
- float b
- ntcFunction* g
- ntcFunction* h
Public Methods
-
- virtual void fGrad( float x[3], float grad[3] )
- virtual void fHessian( float x[3], float hessian[3][3] )
Documentation
ntcFunctionLC is a class introduced to be able to sum two functions.
Setting two functions f,g with the method SetAddends, its method
EvaluateFunction returns the sum of the two functions.
No homology method is defined for this function as there is no way
to guess it from addends. This class has been introduced primarily
to allow an easy implementation of methods like
ntcPlaneFoliation::SetCriticalCurves where is needed to create a new
function form the gradient of the Hamiltonian and the components of the
1-form.
- static ntcFunctionLC* New()
- void SetAddends( ntcFunction *g, ntcFunction *h )
- void SetCoefficients( float a, float b )
- The function
- virtual float f( float x[3] )
- Its gradient
- virtual float fX( float x[3] )
- virtual float fY( float x[3] )
- virtual float fZ( float x[3] )
- Its Hessian
- virtual float fXX( float x[3] )
- virtual float fYY( float x[3] )
- virtual float fZZ( float x[3] )
- virtual float fXY( float x[3] )
- virtual float fYZ( float x[3] )
- virtual float fZX( float x[3] )
- float a
- float b
- ntcFunction* g
- ntcFunction* h
- This class has no child classes.
alphabetic index hierarchy of classes
this page has been generated automatically by doc++
(c)opyright by Malte Zöckler, Roland Wunderling
contact: doc++@zib.de